
NEW CONSTRUCTIONS OF SLICE LINKS

TIM COCHRAN, STEFAN FRIEDL AND PETER TEICHNER

A. We use techniques of Freedman and Teichner [FT] to prove that under certain
circumstances the multi-infection of a slice link is again slice (not necessarily smoothly
slice). We provide a general context for proving links are slice that includes most of the
previously known results.

1. I

A link of m components is the image of a flat embedding S 1 q · · · q S 1 ↪→ S 3 of the
ordered disjoint union of m oriented copies of the circle S 1. Two such links are called
concordant if there exists a flat embedding

(S 1 q · · · q S 1) × [0, 1] ↪→ S 3 × [0, 1]

which restricts to the given links at the ends. A link is called (topologically) slice if it is
concordant to the trivial m–component link or, equivalently, if it bounds a flat embedding
of m disjoint slice disks D2q · · · qD2 ↪→ D4. In the special case m = 1 we refer to the link
as a knot. If the embeddings above are required to be C∞, or smooth, then these notions are
called smoothly concordant and smoothly slice.

The study of link concordance was initiated by Fox and Milnor in the early 1960′s aris-
ing from their study of isolated singularities of 2-spheres in 4-manifolds. It is now known
that specific questions about link concordance are equivalent to whether or not the surgery
and s-cobordism theorems (that hold true in higher dimensions) hold true for topological
4-manifolds. Moreover, the difference between a link being topologically slice and being
smoothly slice can be viewed as “atomic” for the existence of multiple differential struc-
tures on a fixed topological 4-manifold.

There is only one known way to construct a smoothly slice link, namely as the boundary
of a set of ribbon disks [Ro90]. The known constructions of (topologically) slice links
are also fairly limited. In 1982 Michael Freedman proved that any knot with Alexander
polynomial 1 is slice [F85]. It is known that some of these knots cannot be smoothly
slice and hence cannot arise from the ribbon construction. Freedman [F85, F88] and later
Freedman and Teichner [FT] gave other techniques showing that the Whitehead doubles
of various links are slice. The 4-dimensional surgery and s-cobordism theorems (for all
fundamental groups) are in fact equivalent to the free sliceness of Whitehead doubles of
all links with vanishing linking numbers, see [FQ90]. Here a link is freely slice if the
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complement of some set of slice disks in D4 has free fundamental group. However, it is
conjectured that:

Conjecture 1.1. The Whitehead double of a link is freely slice if and only if the link is
homotopically trivial (i.e. has vanishing non-repeating Milnor µ̄-invariants).

Since vanishing linking numbers corresponds to vanishing Milnor invariants of length 2,
the above conjecture (applied to, say, the Borromean rings) would imply that one of those
theorems does not hold for free groups. The conjecture is known for links with one or two
components ([F88]) but is widely open for all other cases, the harder part being the “only
if” direction. Continuing the history of constructions for slice links, the second two authors
recently found a new technique for knots, including examples that are not ribbon knots, do
not have Alexander polynomial 1 and are not Whitehead doubles [FrT05, FrT06].

In the present paper we discuss a method of constructing slice links that generalizes
many of the above. The construction begins with a ribbon knot or link and modifies it by a
procedure called a multi-infection (previously called infection by a string link [C04, p. 385]
and a tangle sum [CO94, Section 1]) which generalizes the classical satellite construction.
Special cases of this construction have been used extensively since the late 1970’s to exhibit
interesting examples of knots and links that are not slice [Gi83, L05, COT03, COT04, H06,
Ci06]. Therefore the present paper complements these results, giving hope for an eventual
complete resolution of the question of when this construction results in a slice knot or link.
Our result also provides a method of producing interesting examples for testing the new
obstructions to a knot or link being smoothly slice [OS03, Ra04, MO05, BW05, GRS07].

In order to state our main theorem we now define the multi-infection of a link by a string
link. By an r–multi–disk Ewe mean the oriented disk D2 together with r ordered embedded
open disks E1, . . . , Er (cf. Figure 1.2). Given a link L ⊂ S 3 we say that a map ϕ : E → S 3
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F 1.2. Multi–disk.

of an r–multi–disk into S 3 is proper if it is an embedding such that the image of the multi–
disk (which we denote by Eϕ) intersects the link components transversely and only in the
images of the disks E1, . . . , Er as in Figure 1.3. Now let J = J1, . . . , Jr ⊂ D2 × [0, 1]
be an (unoriented) r-component string link. Then we can thicken up Eϕ ⊂ S 3 using the
orientation of Eϕ, and tie J into L along Eϕ (cf. Figure 1.4). We call the resulting link the
multi–infection of L by J along Eϕ and denote it by I(L, J,Eϕ). We refer to Section 2.2
for a more formal definition. We will always refer to the image of the boundary curves of
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F 1.4. Multi-infection of L by J.

ϕ(E1), . . . , ϕ(Er) by η1, . . . , ηr. Note that in the case r = 1, the multi–infection of a link L
by a string knot J along a 1–multi–disk Eϕ depends only on the curve η and on the closure
Ĵ. In fact the resulting link is just the satellite link of L with companion Ĵ and axis η, that
we denote I(L, Ĵ, η).

We can now state our main theorem which is an application of the techniques of [FT]
(see also [K03]). We refer to [M57] for the definition of the µ̄–invariants for links. For
string links, these can actually be defined without indeterminacy but we will not need that
fact here since the vanishing of the µ̄-invariants up to a certain length is well defined and
depends only on the link closure of the string link, compare Figure 2.2.

Theorem 1.5. Let D = D1q· · ·qDm ↪→ D4 be slice disks for a link L in S 3. Let ϕ : E→ S 3

be a proper map of an r–multi–disk such that η1, . . . , ηr bound a set of immersed disks δi in
D4 r D in general position. Let c be the total number of intersection and self–intersection
points of the δi and let J be an r–component string link with vanishing Milnor µ̄–invariants
up to (and including) length 2c.

Then the multi–infection I(L, J,Eϕ) of L by J along Eϕ is also slice.

It is not hard to show that the theorem holds for c = 0, in fact, the above result then also
works in the smooth category. We will therefore assume below that c > 0 and in particular
that the string link J has trivial linking numbers (i.e. µ̄-invariants of length 2).

Note that, in the case r = 1, Ĵ is a knot, and hence all Milnor’s µ̄–invariants of Ĵ are zero.
In this case Theorem 1.5 simplifies to the following.
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Corollary 1.6. Let D = D1 q · · · q Dm ↪→ D4 be slice disks for a link L in S 3. Let η be a
closed curve in S 3 r L, unknotted in S 3, such that η is trivial in π1(D4 r D). Then for any
knot Ĵ the satellite link I(L, Ĵ, η) is slice.

We note that our proof of Theorem 1.5 would go through under the weaker assumption
that J has trivial linking numbers if the 4-dimensional surgery sequence were exact for all
fundamental groups. The latter is still an open problem. We use the assumption on the
vanishing of higher Milnor-invariants of J to get ourselves into the π1-null setting where
Freedman and Quinn [FQ90] proved a surgery theorem up to s-cobordism. Conversely, if
our theorem were true under this weaker assumption on J then the surgery sequence would
be exact and the s-cobordism theorem would hold for arbitrary fundamental groups. This
follows from the following discussion and the comments below Conjecture 1.1.

Remark. An important special case of the theorem is when L is the trivial link and D is
a set of slice disks coming from disks in 3-space. Take r = m and choose ηi in such a
way that (Li, ηi) form Whitehead links in disjoint 3-balls. Then there are obvious immersed
disks δi bounding ηi each having exactly one self-intersection and no other intersections.
This means that c = m in the above theorem. Using the symmetry of the Whitehead link,
one can redraw the picture so that the ηi lie in a plane that also contains a multi–disk E. It
is then not hard to see that the multi–infection I(L, J,Eϕ) is the Whitehead double of the
closure of J. Our theorem thus implies that this Whitehead double is (freely) slice if the
µ̄-invariants of J vanish up to length 2m. Theorem 3.1 in [FT] gives the same result with
the better bound m + 1 rather than 2m. This is the best known result concerning the “if”
part of Conjecture 1.1 above (the Conjecture implies that m + 1 can be improved to m).
Note that our current theorem vastly generalizes this very special case and hence it is not
surprising that we need a slightly stronger assumption on the link J in the general setting.

Theorem 1.5 places conditions on both the link J (having vanishing Milnor invariants
up to a certain length) and the curves {ηi} (being null-homotopic in D4 r D). In general
both these conditions are necessary. For example, in case L and J are knots (m = r = 1),
if the condition on η is relaxed then in many cases I(L, J,Eϕ) is provably not slice, despite
the fact that all the Milnor invariants vanish for J. In the case that L is a link, even if the
ηi are null-homotopic, in general some condition on J is necessary. Examples are given in
Section 4.

Theorem 1.5 gives a very general method to prove that links are slice links. Yet the
theorem applies only to links obtained by multi-infection starting from a known slice link,
which a priori seems like a very special class. In fact, up to smooth concordance, it is not a
restrictive class. The following observation, proven in Section 3, shows that, up to smooth
concordance, every algebraically slice knot can be obtained from a ribbon knot L by multi-
infection on a set of curves {ηi} that lie in the commutator subgroup of π1(S 3 r L) (such ηi

are at least candidates to be null-homotopic in the exterior of some set of slice disks for L).

Proposition 1.7. Suppose L is any algebraically slice boundary link (for example any
algebraically slice knot). Then L is smoothly concordant to a link I which is of the form
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I(L, J,Eϕ) where L is a ribbon link, J is a string link with linking numbers zero and the ηi

lie in the intersection of the terms of the lower central series of π1(S 3 r L).

Note that, by Stallings’ theorem, a curve ηi that is null-homotopic in the exterior of some
set of slice disks must lie in the intersection of the lower central series of the link group.

2. P  T 1.5

2.1. A sliceness criterion. We start the proof of Theorem 1.5 by recalling the following
well–known criterion for links that asserts that a link L is slice if and only if ML, the 3-
manifold obtained from L by zero-framed Dehn surgery, is the boundary of a 4-manifold
meeting certain homological criteria. The strategy of our proof will be to construct such a
4-manifold for the zero surgery on the link I(L, J,Eϕ) obtained by infection as in Theorem
1.5.

Proposition 2.1. A link L = L1 q · · · q Lm is slice if and only if there exists a 4–manifold
W such that

(1) ∂W = ML,
(2) π1(W) is normally generated by images of meridians of L,
(3) H1(W) � Zm,
(4) H2(W) = 0.

Proof. Let L = L1 q · · · q Lm be a link in S 3 and let D = D1 q · · · q Dm be a union of
slice disks for L. Let W := D4 r νD where νD is a tubular neighborhood of D, which
exists because D is assumed to be locally flat. It is easy to see that W satisfies the required
properties.

Conversely, given such W we add a 2–handle to W along a meridian of each component
of L and call the resulting manifold W ′. Using the properties (1) to (4) we can easily see that
∂W ′ = S 3, π1(W ′) = 0, and H2(W ′) = 0. Hence W ′ is homeomorphic to D4 by Freedman’s
solution of the topological Poincaré conjecture in dimension 4. Moreover the cocores of
the 2–handles in W ′ form a disjoint union of slice disks for the components of L. �

2.2. Multi–infections and bounding 4–manifolds. The starting point of Theorem 1.5 is
a slice link L. Thus ML is the boundary of a 4-manifold, WL ≡ D4 r νD1 q · · · q νDr,
that satisfies the properties of that Proposition 2.1. Our goal is to produce a 4 manifold
whose boundary is MI(L,J,Eϕ) that satisfies these properties. This will establish that I(L, J,Eϕ)
is slice. In this subsection, as a preliminary step we will exhibit a canonical cobordism
between ML, MI(L,J,Eϕ) and a third manifold MĴ, the zero surgery on the link obtained by
closing up the string link J, as shown in Figure 2.2.

First we give a more formal definition of the multi–infection of a link. Let L ⊂ S 3 be
an arbitrary link and ϕ : E → S 3 be a proper map of an r–multi–disk. Recall that Eϕ is
the image of that disk and we denote by Eϕ the complement of the r subdisks in Eϕ. Let J
be an arbitrary r-component string link as in Figure 2.2. Note that (Eϕ r Eϕ) (as shown in
Figure 1.3) is a 2-disk with r subdisks deleted and so (Eϕ r Eϕ) × [0, 1] (as shown in the
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center of Figure 1.4) may be viewed as a copy of the exterior of the trivial r-component
string link. This manifold has the same boundary as the exterior of the r-component string
link J, denoted

(
D2×[0, 1]rνJ

)
. Thus we can alter S 3 (in the complement of L) by deleting

the exterior of this trivial r-string link and inserting the exterior of the (nontrivial) string
link J. This should be done in such a way as to equate the meridians and longitudes of these
two string links. Recall that the meridians of the trivial string link are the boundary curves
of ϕ(E1), . . . , ϕ(Er) that we denote by η1, . . . , ηr. We claim that the resulting manifold is
homeomorphic to S 3 since

(
S 3 r Int((Eϕ r Eϕ) × [0, 1])

) ∪ (
D2×[0, 1] r νJ

)
=

(
S 3 r Eϕ × [0, 1]

) ∪ (
(D2×[0, 1] r νJ) ∪ (Eϕ × [0, 1])

)
� S 3.

The last homeomorphism follows from the observation that the previous space is the union
of two 3–balls. Finally we define the link I(L, J,Eϕ) to be the image of the link L under this
homeomorphism. It is easy to see that this formal definition agrees with the more intuitive
definition in the introduction. In the sequel, we often abbreviate I(L, J,Eϕ) by I.

This definition yields a description of the multi–infection as: deleting the exterior of
a trivial string link and inserting the exterior of a non-trivial string link. Since this dele-
tion/insertion occurs in the complement of L, it applies equally to the zero-framed surgery
manifolds ML and MI . That is

MI =
(
ML r {exterior of trivial string link}) ∪ (

exterior of J
)
.

From now on assume that we are in the situation of Theorem 1.5 where L is a slice link
and let WL = D4rνD1q· · ·qνDr. Recall that ∂WL = ML contains a copy of the exterior of
the trivial r-string link, the handlebody H ≡ (EϕrEϕ)× [0, 1] as in the center of Figure 1.4.
Furthermore we claim that MĴ also contains a canonical copy of H. In fact MĴ decomposes
as the union of the exterior of the string link J and the exterior of a trivial r-component
string link. To see this, view D2 × [0, 1] as a submanifold of S 3 via the standard embedding
and let B2 × [0, 1] denote the complementary 3-ball. View the string link J as contained in
D2 × [0, 1] and regard the remainder of Ĵ as a trivial string link, T , contained in B2 × [0, 1].
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Clearly then
(S 3 r νĴ) = (D2×[0, 1] r νJ) ∪ (B2 × [0, 1] r νT ).

Since
MĴ =

(
S 3 r νĴ

) ∪ ( ∪r
i=1 µĴi

× D2),
MĴ decomposes into (D2×[0, 1] r νJ), the exterior of the string link J, and the handlebody

(B2 × [0, 1] r νT ) ∪ ( ∪r
i=1 µĴi

× D2) � (B2 × [0, 1] r νT )

The last homeomorphism follows from the fact that each µĴi
× D2 is attached only along

µĴi
× A where A is an arc in ∂D2. Namely, it is the arc running along T , rather then J. It

follows that the fundamental group of this handlebody is the free group on µ1, . . . , µr, the
meridians of T and Ĵ. We now form a 4-manifold

N = WL ∪ (MĴ × [0, 1])

as shown schematically in Figure 2.3, by identifying H, the copy of the trivial string link

WL

MĴ × [0, 1]

H
MĴ MI

N

F 2.3

exterior in ∂WL with the copy in MĴ × {0} (shown dashed in Figure 2.3) in a way such that
the curves ηi on the former get identified to the meridians µĴi

of the latter. This is done in
such a way that the “new” boundary component created is precisely MI since it is obtained
from ML be deleting the trivial string link exterior and inserting the exterior of J.

A key observation is that the curves ηi which are equated to the meridians µi of J live in
H ⊂ ∂WL and are null-homotopic in WL by hypothesis.

If Ĵ were itself a slice link then we would know that MĴ were the boundary of some
4-manifold W that satisfies the conditions of Proposition 2.1. We could then use this W to
cap off MĴ ⊂ ∂N, resulting in 4-manifold N′ whose boundary is MI and which satisfies the
conditions of Proposition 2.1, proving that the infected link I were slice. This establishes
the following (previously known) very special case of Theorem 1.5 which holds without
any hypotheses on the curves ηi.
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Corollary 2.4. The link obtained by a multi-infection of a slice link L using a string link J
whose closure is a slice link, is again a slice link.

However, in general MĴ will not bound a 4-manifold that satisfies Proposition 2.1. In
this case we must be more clever and make use of our hypotheses on the ηi curves.

Lemma 2.5. N satisfies the following conditions:
1. ∂(N) = MI q −MĴ,
2. π1(N) is normally generated by the meridians of I,
3. H1(MI)→ H1(N) is an isomorphism,
4. H2(MĴ)→ H2(N) is an isomorphism,
5. π1(MĴ)→ π1(N) is the zero map.

Proof. N is the union of WL and MĴ × [0, 1] glued along H. Note also that {µi} is a basis for
the first homology of H. Therefore the Mayer–Vietoris sequence becomes

0 → H2(WL) ⊕ H2(MĴ × [0, 1]) → H2(N)
→ ⊕r

i=1Zµi → H1(WL) ⊕ H1(MĴ × [0, 1]) → H1(N) → 0.

Since ⊕r
i=1ZµĴi

�−−→ H1(MĴ) and since H2(WL) = 0, it follows that H2(MĴ) → H2(N) is an
isomorphism, establishing (4). Since µi = ηi dies in H1(WL) it also follows that H1(WL) →
H1(N) is an isomorphism. But H1(WL) � H1(ML) � Zm generated by the meridians of L.
Clearly these same meridians are a basis for H1 of the infected link exterior and thus for
H1(MI). This establishes (3).

In order to prove (5) note that the map

〈µi〉 � π1(H)→ π1(MĴ × [0, 1])

is surjective and the map
〈ηi〉 � π1(H)→ π1(WL)

is the zero map. When gluing the two copies of H, the meridians µi are identified with the
ηi, establishing (5). By the Seifert-van Kampen theorem we have

π1(N) = π1(WL) ∗{ηi=µi} π1(MĴ).

Moreover π1(WI) is normally generated by the meridians of the link I, and π1(MĴ) is nor-
mally generated by {ηi} which are trivial in π1(WL). Thus π1(N) is normally generated by
the meridians of I establishing (2). �

2.3. Conclusion of the proof. We show how the proof of a theorem of Freedman and
Teichner can be used to alter N to a 4-manifold, N′, whose boundary is MI and which
satisfies Proposition 2.1. We strongly encourage the reader to have pages 547–549 of [FT]
available.

Recall the situation shown on the right-hand side of Figure 2.3. Let M denote a collar
on the MĴ boundary component as indicated by the shaded portion on the left-hand side of
Figure 2.6.
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A note of caution is in order. We shall shortly appeal to the details of a proof in [FT]. In
that proof, the MĴ -boundary component of N is capped off by a 4-manifold that is called
M. But in fact this “cap” is not important to the proof (since the strategy is to replace it
anyway). Therefore we omit the cap. Our collar M will play the role of M and our N will
play the role of N in [FT].

Let ∂+M denote the “outer” boundary component of the collar M. Recall that π1(∂+M) =

π1(MĴ) is normally generated by its meridians µi = η1, . . . , µr = ηr and by assumption these
curves bound immersed disks δi in WL where c is the total number of intersections and self-
intersections. One such disk is shown schematically on the left side of Figure 2.6. We now
closely follow the proof of [FT, p. 547] using the same notation. In accordance with that
notation, set γi = ηi = µi. Let M1 be a regular neighborhood of M ∪ {δi} ↪→ N as shown
schematically on the right-hand side of Figure 2.6 by the shaded portion of N. Now discard
M1 and consider N r M1, the unshaded part of the figure. The latter has a new boundary
component, ∂+M1. The strategy is to produce, using the proof in [FT], another 4–manifold
M3 with ∂M3 = ∂+M1 and use it to plug up this hole in N r M1. Then, letting

N′ = (N r M1) ∪∂M3 M3,

we see that ∂N′ = MI and we will verify that N′ also satisfies the other conditions of
Proposition 2.1, establishing that I is a slice link.

Lemma 2.7. There exists a 4-manifold M3 with ∂M3 = ∂+M1 such that
1. The inclusion of the boundary induces an isomorphism H1(∂M3) � H1(M3).
2. M3 is homotopy equivalent to a wedge of c circles where these circles correspond

precisely to the double point loops among the δi.

Before constructing M3, we prove that its existence will enable us to finish the proof of
Theorem 1.5.

Lemma 2.8. Using the inclusion induced maps, the following statements hold:
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1. H1(N r M1)→ H1(N) is an isomorphism,
2. H2(∂+M1)→ H2(N r M1) is surjective,
3. π1(N r M1) is normally generated by the meridians of I and the meridians of the

disks δi.

Proof. First note that, since M is a collar, N r M1 � N r ∪iνδi, where νδi is a (closed)
regular neighborhood of δi. Then excision and Poincaré duality give isomorphisms

Hp(N,N r M1) � Hp(N,N r ∪iνδi) � Hp(∪iνδi, ∂
′(∪iνδi)) � H4−p(∪iνδi,∪iν(∂δi))

where we have decomposed the boundary ∂(∪iνδi) of the regular neighborhood into the two
relevant parts. The latter groups are given by

Hp(N,N r M1) � H4−p(∪iνδi,∪iν(∂δi)) �



Zr if p = 2,
Zc if p = 3,
0 else.

For p = 2, generators are given by transverse disks to the δi and for p = 3, each inter-
section point P contributes a generator via a solid torus TP in a small neighborhood of P
(whose boundary is the well known Clifford torus and which intersects the double point
loop exactly once). Thus the long exact sequence of the pair (N,N r M1) becomes

Zc → H2(N r M1)→ H2(N)
π→ Zr → H1(N r M1)→ H1(N)→ 0,

where π is given by the algebraic intersection numbers with the various δi. Thus the com-
position of H2(MĴ) � H2(N) (see (4) of Lemma 2.5) with π is given by the matrix of
intersection numbers of capped-off Seifert surfaces for Ĵi with the ∂δ j = γ j. Since γ j is a
meridian of Ĵ j, this matrix is the identity with respect to these bases (we have used that the
linking numbers of Ĵ are zero). Thus π is an isomorphism and (1) above follows. It also
follows that H2(N r M1) is generated by the Clifford tori ∂TP and since these clearly lie in
∂+M1, statement (2) also follows.

For (3), recall from property (2) of Lemma 2.5 that π1(N) is normally generated by the
meridians of I. Any homotopies in N may be assumed to hit δi transversely, so (3) follows
immediately.

�

Now, assuming we have constructed M3 as in Lemma 2.7, we claim:

Lemma 2.9. N′ = (N r M1) ∪∂M3 M3 satisfies the conditions of Proposition 2.1.

Proof. Consider the Mayer-Vietoris sequence for N′ = (N r M1) ∪ M3:

H1(∂+M1)
ψ→ H1(N r M1) ⊕ H1(M3)→ H1(N′)→ 0.

By property (1) of Lemma 2.7, H1(∂+M1) � H1(M3). It follows that ψ is injective and that

H1(N r M1) � H1(N′),
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and so by properties (3) of Lemma 2.5 and (1) of Lemma 2.8

H1(MI) � H1(N) � H1(N r M1) � H1(N′).

This establishes condition (3) of Proposition 2.1. Moreover examining Mayer-Vietoris
again:

H2(∂+M1)→ H2(N r M1) ⊕ H2(M3)→ H2(N′)→ H1(∂+M1)
ψ→

where ψ is injective and H2(M3) = 0 by property (2) of Lemma 2.7. Thus H2(N r M1) →
H2(N′) is surjective. Thus by property (2) of Lemma 2.8,

H2(∂+M1)→ H2(N r M1)→ H2(N′)

is surjective. Since any class in H2(N′) is carried by ∂+M1 = ∂M3 and H2(M3) = 0, it
follows that H2(N′) = 0, establishing condition (4) of Proposition 2.1.

Finally consider π1(N′) which, by the Seifert-Van Kampen theorem, equals

π1(N r M1) ∗π1(∂+M1) π1(M3).

The map π1(∂+M1) → π1(M3) is surjective because the double point loops come from the
boundary. Therefore, π1(N r M1) → π1(N′) is also surjective. Property (3) of Lemma 2.8
implies that π1(N′) is normally generated by the meridians of I and the meridians of the
disks δi. But the meridians of the disks δi live on the Clifford tori and hence intersect triv-
ially with the solid tori TP from Lemma 2.8. In the construction of M3 it will become clear
that intersections with TP give the isomorphism of π1M3 with the free group on c generators.
Therefore, the meridians to δi map trivially to π1M3 and thus π1(N′) is normally generated
by the meridians of I alone. Thus N′ satisfies all the conditions of Proposition 2.1. �

This concludes the proof that I is slice and hence the proof of Theorem 1.5, modulo the
proof of Lemma 2.7.

2.4. Using the proof in [FT] to construct M3. [FT, p. 548] explains how to draw a “Kirby
diagram” for the 3-manifold ∂+M1 as follows. First consider the abstract 4-manifold ob-
tained from M by adding r 2–handles along (γi, fi) ⊂ ∂+M = MĴ using framings fi induced
from the δi. This is not embedded in N. Let Σ denote the resulting homology sphere
obtained as the top boundary, i.e. Σ is obtained from MĴ by fi–framed surgery on the
meridians γi as shown in part A of Figure 2.10 (only one component of Ĵ is shown). Let
{m1, ...,mr} denote a set of meridians for the {γ1, ..., γr}, also shown in part A of the figure.

Let L denote the link {m1, ...,mr} ⊂ Σ and ΣL denote the 0–framed surgery on L ↪→ Σ.
Meridians of this link are called µ′i and are shown dashed in part A of the figure. Pictures
A through D illustrate a proof of the observation in [FT, p. 547] that ΣL � MĴ = ∂+M by
a map that sends a meridional set {µ′1, ..., µ′r} to {γ1, ..., γr}. This observation will be used
later. This is seen by first sliding each component Ĵi over the corresponding 0–framed mi

which results in part B of Figure 2.10. Then the 0–framed mi cancels with the fi–framed
γi, yielding part D of the figure.

To obtain a description of ∂+M1 from Σ, one must take into account the self-plumbings
of the δi.
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Lemma 2.11. There exists a 4-manifold M2 with fundamental group free on c generators
and with ∂M2 = ∂+M1 such that

1. The inclusion of the boundary induces an isomorphism H1(∂M2) � H1(M2).
2. π2M2 is a free Z[π1M2]-module with hyperbolic intersection form.

Proof. In [FT, Figugres 4.1-4.3], a “Kirby calculus” description of ∂+M1 is obtained, viewed
as handles attached to the unique contractible 4-manifold Z with boundary Σ. Let M2 denote
the 4-manifold given by [FT, Figure 4.3]. It is obtained from Z by attaching c 1-handles
and 2c 2-handles to Σ = ∂Z in a way that ∂M2 = ∂M1. Moreover, the 2-handles go ho-
motopically trivially over the 1-handles, implying the statement for the fundamental group.
Moreover, it follows that M2 is homotopy equivalent to a wedge of c circles and 2c 2-
spheres, in particular π2M2 is a free Z[π1M2]-module of rank 2c. Finally, the figure clearly
shows that the 2-handles generate a hyperbolic form on π2M2 which by the homology long
exact sequence for the pair (M2, ∂M2) implies (1). �

If surgery worked over the free group, we could remove the hyperbolic form on π2M2

to get a manifold M3 with the desired properties of Lemma 2.7. We actually just need
surgery to work up to s-cobordism (rel. boundary) and this is in fact a theorem in the
π1-null case [FQ90]. This condition means that the union of the images of all immersed
2-spheres representing the hyperbolic form maps trivially on π1 into the 4-manifold. In the
case of M2, the 2-spheres are made from the cores of the 2-handles, together with null-
homotopies of the attaching circles in Z. Since Z is simply connected, it suffices to keep
those 2c null-homotopies disjoint to make the union of all 2-spheres π1-null.

This is where our assumption on the Milnor invariants of J comes in: The above 2-
handles are attached to a number of parallel copies of the circles mi where the total number
is precisely 2c. We now claim that we can replace [FT, Lemma 4.2] by

Lemma 2.12. Any link consisting of 2c untwisted parallel copies of the components mi of
L = {m1, ...,mr} in Σ bounds a set of disjointly immersed disks in Z. Here we mean that 2c
is the sum of the number of parallels, ci, of mi.
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Given this Lemma, we can eliminate all the second homology of M2 by the π1-null
surgery theorem up to s-cobordism. This gives the 4-manifold M3 that is homotopy equiv-
alent to a wedge of circles and satisfies Lemma 2.7. The argument works exactly like in the
paragraph just below Lemma 4.2 in [FT]. This concludes the proof of Lemma 2.7, modulo
the proof of Proof of Lemma 2.12.

Proof of Lemma 2.12. The Lemma is vacuously true for c = 0, so assume c ≥ 1. By [FT,
Lemma 2.7], the conclusion of the Lemma is equivalent to the property that

(2.13) All µ̄ − invariants of length less than or equal to 2c vanish for L.

Milnor’s invariants for links in homology 3-spheres are defined in the exactly same way as
for links in S 3, see [FT]. Now let F be the free group on r generators and F → π1(ΣrL) be
the meridional map. The vanishing of the µ̄-invariants of L is equivalent to the following
three statements:

(2.14) F/F2c+1 � π1(Σ r L)/π1(Σ r L)2c+1

(2.15) F/F2c � π1(ΣL)/π1(ΣL)2c

(2.16) H2(ΣL)→ H2(π1(ΣL)/π1(ΣL)2c−1) is the trivial map.

The equivalence of 2.13, 2.14 and 2.15 is standard for links in S 3 [M57]. For links in
general homology spheres most of this is derived in [FT, Section 2]. In particular the
equivalence of 2.14 and 2.16 is established there using [D75, Theorem 1.1]. Now we have
reached the key point: the desired property 2.16 depends only on the zero surgery ΣL, not
on L itself (indeed it only depends on π1(ΣL)). At this point we only have to recall our
previous observation that ΣL � MĴ. Therefore each of the above conditions is equivalent
to the requirement that the µ̄-invariants of length less than or equal to 2c vanish for Ĵ. But
this was the assumption of our Theorem 1.5. �

3. P  P 1.7

SupposeL is an algebraically slice boundary link of m components. We give the proof in
the case thatL is a knot. The proof for a boundary link is identical. SinceL is algebraically
slice, there is a genus r Seifert surface Σ which is in “disk-band” form, as suggested by the
left-hand side of Figure 3.1, where the “α-bands” are untwisted and such that the link Ĵ
formed by the cores of these bands has zero linking numbers. This is possible since we can
choose the α-bands to generate a metabolizer of the Seifert form.

It is well-known that if Ĵ is (smoothly) slice then L is (smoothly) slice (since then the
Seifert surface could be “surgered” to a disk using the slice disks for Ĵ). Let ϕ : E → S 3

denote an r-multi-disk that hits each α-band once transversely as suggested on the right-
hand side of Figure 3.1. By thickening up E we arrive at the local picture shown in the
left-most part of Figure 3.2, of a 2-cable of the trivial r-string link T .

Let J denote the r-string link formed by the cores of the α-bands in the exterior of the
thickened E. Suppose we replace the 2-cable of T by the 2-cable of the string link −J
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as shown in the second frame of Figure 3.2, and call the resulting knot L. Then L is a
knot that admits a disk-band form whose α-bands form a link that is the closure of −J#J.
Since the latter is a ribbon link, L is a smoothly slice knot (actually a ribbon knot although
this takes a little more work to show). On the other hand, suppose we replace T by the
2-cable of the string link −J#J, as shown in the third frame of Figure 3.2, and denote
this knot by I. Then I is obtained from the ribbon knot L by a multi-infection using the
string link J as indicated by the equivalence of the third and fourth frames of Figure 3.2
(the knot in the fourth frame clearly differs from the knot in the second frame by a tangle
insertion-deletion). Moreover since the string links T and −J#J are smoothly concordant,
their 2-cables are also smoothly concordant. It follows that the knot L is concordant to the
knot I (just alter the product concordance from L to itself by the string link concordance).
Thus, the original knot L is smoothly concordant to the knot I which is obtained from the
slice knot L by infection using J. The curves {ηi} are meridians to the α-bands and hence
lie in the exterior of a system of Seifert surfaces that exhibit L as a boundary link. Then
it is well known that they lie in the intersection of the terms of the lower central series of
π1(S 3 r L), since the Seifert surfaces can be used to construct a map to a wedge of circles
that sends the ηi to the wedge point. This concludes the proof of Proposition 1.7.
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4. E

In this section we give several examples of the applicability of Theorem 1.5 and Corol-
lary 1.6. In Section 1 we explained how, given any link Ĵ, Theorem 1.5 could be applied to
classes of links much more general than Whitehead doubles of Ĵ. In the current section we
restrict to the case that Ĵ is a knot.

Let L ⊂ S 3 be a link and let η ⊂ S 3 r L be a closed curve which is the trivial knot in S 3.
The curve η bounds an embedded disk in S 3 which intersects L transversely and extending
this disk so that η lies in the interior we get an embedded 1–multi–disk Eϕ. Let Ĵ be a
knot and let J be a string knot such that its closure is Ĵ. Recall that, in this case, all of
Milnor’s µ̄–invariants of Ĵ are zero. We can form the infection link I(L, J,Eϕ). It is easy to
see that this link only depends on η and Ĵ, and we therefore denote it by I(L, Ĵ, η). As we
have mentioned, in the literature I(L, Ĵ, η) is sometimes called the satellite link of L with
companion Ĵ and axis η.

4.1. Infection of ribbon knots by a knot. In this section we compare Theorem 1.5 with
the two previously known slicing theorems:

(1) If K is a knot with ∆K(t) = 1, then K is slice ([F85]).
(2) If K is a knot with ∆K(t) = (2t− 1)(t− 2) and if a certain non–commutative Blanch-

field pairing vanishes, then K is slice ([FrT05]).
We first consider Figure 4.1. The shaded region in Figure 4.1 (a) is part of a ribbon disk

D for a ribbon knot K. Figure 4.1 (b) shows a curve η which is clearly the unknot in S 3.
Note that η is homotopically equivalent to a curve linking the ribbon disk D once without

D η
(a) (b) (c)

F 4.1. Infection by a knot.

intersecting it (cf. Figure 4.1 (c)). It is therefore clear that η is homotopically trivial in
D4 r D. It follows immediately from Corollary 1.6 that I(K, Ĵ, η) is slice for any knot Ĵ.

(1) Now consider Figure 4.2, it shows two isotopic pictures for the link η ∪ K. In the
special case that D is the trivial ribbon disk for the unknot K, it follows immediately from
Figure 4.2 (b) that I(K, Ĵ, η) is the Whitehead double of Ĵ. Therefore Corollary 1.6 gives
another proof that the Whitehead double of any knot Ĵ is slice. Note though that there exist
many Alexander polynomial knots which are not Whitehead doubles (e.g. the Kinoshita–
Terasaka knot), and to which Theorem 1.5 a priori does not apply.

(2) We consider Figure 4.3 (a). The knot K1 is the ribbon knot 61. As we saw above,
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F 4.3. The knots K1 and K2 with curves η1 and η2.

the knot I = I(K1, Ĵ, η1) is slice for any knot Ĵ. Note that ∆I(t) = ∆K1(t) = (2t − 1)(t − 2).
In fact [FrT05, Proposition 7.4] also applies to show that I is slice. We point out that in
[FrT05, Figure 1.5] a different and incorrect curve η was chosen (cf. also the correction in
[FrT06]).

(3) We now turn to Figure 4.3 (b). By the above discussion I = I(K2, Ĵ, η2) is slice for
any knot Ĵ. Note that ∆I(t) = ∆K2(t) = (2t − 3)(2t−1 − 3). In particular neither of the two
previous slicing theorems can be applied directly.

Remark. All of the knots in Figure 4.3, I(Ki, Ĵ, ηi), i = 1, 2, are in fact smoothly concordant
to the Whitehead double Wh(Ĵ). Indeed, by “cutting the ribbon band” and capping off

the trivial component that splits off, one constructs a smooth ribbon concordance from
I(Ki, Ĵ, ηi) to the case in Figure 4.2 (b) where the knot is the Whitehead double of Ĵ. For
many Ĵ, the knot Wh(Ĵ) is known not to be smoothly slice, in particular for such Ĵ the knots
I(Ki, Ĵ, ηi) are slice but not smoothly slice.

4.2. Satellite links. We now turn to the study of satellite links. We first point out an ar-
ray of examples from the literature that illustrate the apparent necessity of the conditions
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in Theorem 1.5. First we give examples illustrating the necessity of the conditions on the
ηi. If we take L = L1 q L2 to be the trivial link and η as in Figure 4.4 then it is easy to

L2

L1
η

I(L,J,η)

F 4.4. Satellite construction with Ĵ the figure 8 knot, and L the trivial
2–component link.

see that η is a non–trivial element, namely it is the commutator [x1, x2] in the free group
π1(S 3 r L1 q L2) = π1(D4 r D1 q D2) = 〈x1, x2〉 where D1 q D2 is the obvious slice disk
for the trivial link. Hence Theorem 1.5 does not apply. Indeed, in many cases it is known
that I(L, Ĵ, η) (which is just the Bing double Bing(Ĵ) of a knot Ĵ) is not slice. For exam-
ple Bing(Ĵ) is known to fail to be slice if Ĵ is not an algebraically slice knot [CLR07].
Even if Ĵ is an algebraically slice knot, there are many examples where higher-order sig-
natures obstruct Bing(Ĵ) from being a slice link [CHL07]. Much more generally, if η is
taken to be any homotopically essential (unknotted) circle in the exterior of the trivial link,
then these same invariants obstruct I(L, Ĵ, η) from being slice [H06, Theorem 5.4, Corol-
lary 5.6] [CHL07, Theorem 5.8] [Ch07]. Included among these examples are the so-called
iterated Bing doubles of Ĵ. Therefore for these examples it seems likely that I(L, Ĵ, η) will
be slice if and only if either η is null-homotopic or Ĵ is itself a slice knot.

Even if η is null-homotopic, the link I(L, Ĵ, η) can fail to be slice. If we take L to be the
trivial 2-component link and take η1, η2 to be curves as in Figure 4.1, then, as previously
observed, I(L, Ĵ, η) is Wh(Ĵ). But the Whitehead double of the Hopf link is known not to
be slice (cf. [F88]). Thus some condition on the link Ĵ is necessary in general.

On the other hand consider the following very general example. The shaded region in
Figure 4.5 (a) is part of two ribbon disks D1 and D2 for a link L = L1 q L2. Figure 4.5 (b)
shows a curve η. If we view η as a knot in S 3 we see that the kinks of η cancel with the
twists, hence η ⊂ S 3 is the unknot in S 3. Note that after resolving the self–intersections
of η we can contract η in the complement of L to the trivial knot, in particular η is homo-
topically trivial in D4 r D. It now follows immediately from Corollary 1.6 that I(L, Ĵ, η) is
topologically slice for any knot Ĵ. Also note that η is unknotted in the complement of each
component, in particular if L has components L1 and L2, then I(L, Ĵ, η) also has components
L1 and L2, albeit linked differently.

In the very special case that L is the trivial link and D1 and D2 are disjointly embedded
disks, then one can see that I(L, Ĵ, η) is the Bing double of the Whitehead double of Ĵ. It is
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F 4.5. Infection of a link by a knot.

well–known that this link is in general not smoothly slice. We refer to [Ci06] to a summary
of known obstructions to the Bing double of a Whitehead double being smoothly slice.

R

[BW05] A. Beliakova and S. Wehrli. Categorification of the colored Jones polynomial and Rasmussen in-
variant of links, Preprint (2005), arXiv:math. QA/0510382.

[Ch07] J. C. Cha, Link concordance, homology cobordism, and Hirzebruch-type intersection form defects
from towers of iterated p-covers, Preprint (2007), arXiv:/0705.0088,2007.

[CLR07] J. C. Cha, C. Livingston and D. Ruberman, Algebraic and Heegard-Floer invariants of
knots with slice Bing doubles, to appear in Math. Proc. Cambridge Phil. Soc., Preprint (2007),
http://xxx.lanl.gov/abs/math.GT/0612419.

[Ci06] D. Cimasoni, Slicing Bing doubles, Algebr. Geom. Topol. 6, 2395-2415 (2006).
[C04] T. Cochran, Noncommutative Knot Theory, Algebraic and Geometric Topology 4, 347–398 (2004)
[CHL06] T. Cochran, S. Harvey and C. Leidy, Knot concordance and Blanchfield duality, Oberwolfach

Reports 3, no. 3 (2006)
[CHL07] T. Cochran, S. Harvey and C. Leidy, Knot concordance and Blanchfield duality, Preprint (2007),

http://front.math.ucdavis.edu/0705.3987
[CGO01] Tim D. Cochran, A. Gerges and K. Orr, Dehn surgery equivalence relations on 3-manifolds, Math.

Proc. Cambridge Philos. Soc. 131, no.1, 97–127 (2001)
[CO94] T. Cochran and K. Orr, Homology Boundary Links and Blanchfield Forms: Concordance Classifica-

tion and new tangle-theoretic constructions, Topology 33, 397-427 (1994)
[COT03] T. Cochran, K. Orr and P. Teichner, Knot concordance, Whitney towers and L2-signatures, Ann. of

Math. (2) 157, no. 2: 433–519 (2003)
[COT04] T. Cochran, K. Orr and P. Teichner, Structure in the classical knot concordance group, Comment.

Math. Helv. 79, no. 1: 105–123 (2004)
[D75] W. Dwyer, Homology, Massey products and maps between groups, J. Pure Appl. Algebra 6 (1975),

no. 2, 177–190.
[F85] M. H. Freedman, A new technique for the link slice problem, Inventiones Mathematicae (3), 80: 453–

465 (1985)
[F88] M. H. Freedman, Whitehead3 is a slice link, Invent. Math. 94, no.1: 175-182 (1988)
[FQ90] M. Freedman, F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series, 39. Princeton

University Press, Princeton, NJ (1990)
[FT] M. Freedman, P. Teichner, 4-manifold topology. II. Dwyer’s filtration and surgery kernels, Invent. Math.

122, no. 3, 531–557 (1995)



NEW CONSTRUCTIONS OF SLICE LINKS 19

[FrT05] S. Friedl, P. Teichner, New topologically slice knots, Geometry and Topology, Volume 9 (2005)
Paper no. 48, 2129–2158.

[FrT06] S. Friedl, P. Teichner, Correction to ‘New topologically slice knots’, Geometry and Topology, Vol-
ume 10 (2006) 3001–3004.

[Gi83] P. M. Gilmer, Slice knots in S 3, Quart. J. Math. Oxford Ser. (2), The Quarterly Journal of Mathemat-
ics. Oxford. Second Series (34), no.135: 305–322 (1983)

[GRS07] E. Grigsby, D. Ruberman and S. Strle, Knot concordance and Heegaard Floer homology invariants
in branched covers, Preprint (2007)

[H06] S. Harvey, Homology Cobordism Invariants of 3-Manifolds and the Cochran-Orr-Teichner Filtration
of the Link Concordance Group, Preprint (2006)

[K03] V. Krushkal, Dwyer’s filtration and topology of 4-manifolds, Math. Res. Lett. 10 (2003), no. 2-3,
247–251.

[MO05] C. Manolescu and B. Owens, A concordance invariant from the Floer homology of double branched
covers, Preprint (2005), arXiv:math. GT/0508065, to appear in Inter. Math. Res. Not.

[L05] C. Livingston, A survey of classical knot concordance, Handbook of knot theory, Elsevier B. V., Am-
sterdam, 319–347 (2005).

[M54] J. Milnor, Link groups, Ann. of Math. (2) 59, (1954), 177–195
[M57] J. Milnor, Isotopy of links, Algebraic geometry and topology. A symposium in honor of S. Lefschetz,

pp. 280–306 (1957)
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